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In the paper the result of a research done by using the automated system
xRandNet is presented, which is designed and implemented for generating
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random networks. The research is related to the connected component distribu-
tion of random block-hierarchical networks, which are quite new objects in the
random network theory.
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Introduction. In various fields of science, the number of so-called complex
systems, which as a rule, are unconventional both in structure and in the nature of
changes, is increasing. Among them are biological systems (in particular, biopoly-
mers, DNA, RNA, proteins), technical systems, social, economic ones and others [1].
In the early 1960s Paul Erdös and Alfréd Rényi came up with a suggestion to use
probabilistic methods in the study of networks. This was applied in the modeling
of complex systems, by representing the elements of the system as nodes and their
interaction as links. The network is called random, if any connection in it appears due
to a certain probabilistic rule. From henceforth we will only examine non-directed
networks, which do not have self-references and multiple bonds. Thus, Erdös and
Rényi came up with the model of random network for which the number of nodes N
and probability p, defining the existence of connection between any 2 nodes of the
network, are given [1].

Apart from the studies of classical random Erdös-Rényi networks, the investi-
gation of new classes of networks has recently become increasingly interesting: these
are small-worlds, for which the value of the average distance between the nodes is
very small against the size of the network; scale-free networks, characterized by a
∗ E-mail: ankocharyan@gmail.com
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power-law behavior of the node degree distribution and others. In the last decade
it was introduced an essentially different class of random networks, called block-
hierarchical. It turned out this class of networks can be applied in the modeling of
different biological structures ranging from proteins to neuronal networks [2, 3].

The study of random networks supposes statistical research of different
topological properties: average path length, diameter, average degree, average clus-
tering coefficient, etc., as well as distributions: node degrees, clustering coefficients,
connected components, etc. [1].

Automated system Extended Random Networks (xRandNet) [4] was developed
based on the needs of random networks researches of both models: classical
Erdös-Rényi, Watts-Strogatz, Barabási-Albert; block-hierarchical Regular Block-
Hierarchical, Non Regular Block-Hierarchical, HMN1, HMN2 [2–6], etc. Block-
hierarchical models in general, and Regular Block-Hierarchical model in particular,
are almost not investigated, and as xRandNet is mainly aimed to efficiently study
them, it has allowed to obtain some results about the behavior of the main topologi-
cal properties of block-hierarchical networks.

In the paper definitions of regular block-hierarchical networks and connected
component distribution (CC distribution) are given, the extraction of the calculation
formula of the connection probability in the regular block-hierarchical networks and
the results of research on CC distribution are presented. A comparison of the
obtained results for classical and scale-free networks well also be discussed. All
the studies were conducted by using the automated system xRandNet.

Random Regularly Branching Block-Hierarchical Network.
D e f i n i t i o n 1. Let b and Γ be natural numbers, b > 1. For the given b

and Γ a class of regularly branching block-hierarchical networks ℜb,Γ is defined as
follows. The number of nodes in the network Gb,Γ ∈ ℜb,Γ is bΓ. The network is
constructed by levels. On every new level γ, 0 ≤ γ ≤ Γ, new clusters (subnets) are
formed via merging the clusters formed on the previous level, and by introducing new
connections between them via joining some of them (Fig. 1) [5]. Random block-
hierarchical network is defined by the probability of the occurrence of the connec-
tions, which varies from level to level and is given by:

qγ = b−µγ , (1)

where µ is the parameter of the model (network density) and γ is the cluster level for
which the connections are formed.

D e f i n i t i o n 2. In an undirected network nodes i and j are call connected,
if there is a path between them. A network is connected, if all pairs of nodes in the
network are connected. A connected component is a subset of nodes in a network,
so that there is a path between any two nodes that belong to the component, but
one cannot add any more nodes having the same property [7]. By the distribution of
connected components (CC distribution) means the dependence of the average counts
of connected components 〈CC〉s on the size of the connected component s.

In other words, it describes the distribution of connected components of
various sizes in the network.
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Fig. 1. Block-hierarchical network G3,2: a) clusters view; b) network view;
c) adjacency matrix A3,2 view.

Probability of Connection between 2 Nodes in the Regular Block-
Hierarchical Network. The definition of block-hierarchical network and Eq. (1)
shows it clear that for this model parameter µ , network density, in a probabilistic
one (determining the probability of connection). In order to compare the behavior
of the topological properties of this model with the corresponding behavior of the
classical model it is important to define how the parameter µ is mapped in terms
of the connection probabilities between any 2 nodes in the network: parameter p in
Erdös-Rényi model.

Consider the block-hierarchical network Gb,Γ. Suppose V (Gb,Γ)= {x1, . . . ,xN}
is a non-empty finite set of nodes, and E(Gb,Γ) is unordered pairs of different
elements from V (Gb,Γ), set of connections. Let us also denote by Joinγ ,1 ≤ γ ≤ Γ,
the set of pairs contained in by same cluster of the level γ , but not contained in a
cluster of a level γ−1. It is clear that the connections in the γ-level cluster may only
occur between such pairs of nodes. We call the pair from the set Joinγ “good” for the

level γ . It is clear that E(Gb,Γ)⊆
Γ

∑
γ=1

Joinγ . Denote by QJoinγ the probability of the

pair of nodes from V (Gb,Γ) to be “good” for the level γ (Fig. 2).

Fig. 2. Structure of the level γ , 1≤ γ ≤ Γ, in block-hierarchical network.

To yield “good” pairs a cluster of the level γ is chosen in bΓ−γ ways. Out of
the selected clusters 2 clusters of the level γ−1 are chosen in C2

b ways, and out of the
selected 2 clusters any nodes are chosen in bγ−1 ways for every node. Thus

QJoinγ =
bΓ−γC2

b(b
γ−1)(bγ−1)

C2
N

, (2)

where C2
N is the number of all possible pairs of nodes.
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P r o p o s i t i o n . Suppose Gb,Γ is a regular block-hierarchical network.
Denote by Qγ the probability of connections of 2 nodes of the network Gb,Γ in the
i-cluster of the level γ,1≤ γ ≤ Γ. Then

Qγ =
(b−1)
(N−1)b

·
γ

∑
i=1

(b1−µ)i. (3)

P r o o f . The proof will be conducted by induction on the levels γ,1≤ γ ≤ Γ.
Suppose γ = 1. On the first level N nodes are split into groups of b nodes,

clusters of the first level. Inside each cluster of the first level the nodes are connected
with a probability of q1. Thus the probability of connection in the cluster of the first
level equals Q1 = q1QJoin1.

Suppose γ = 2. On the second level the clusters of the first level are split into
groups of b-clusters of the second level. Inside each cluster of the second level the
clusters of the first level are connected with a probability of q2. Thus the probability
of connection in the cluster of the second level equals Q2 = q2QJoin2 +Q1.

Likewise, for the level γ > 2 the probability of connection in the cluster of
level γ equals Qγ = qγQJoinγ +Qγ−1.

Solving the resulting recurrence relation, we find

Qγ =
γ

∑
i=1

qiQJoini. (4)

Using (1) and (2),

Qγ,i =
γ

∑
i=1

qiQJoini =
γ

∑
i=1

b−iµ ·
bΓ−iC2

bbi−1bi−1

C2
N

=
γ

∑
i=1

C2
b

C2
N
·bi−iµ+Γ−2 =

=
C2

b

C2
N
·

γ

∑
i=1

bΓ−2bi−iµ =
C2

b

C2
N
·bΓ−2

γ

∑
i=1

bi(1−µ) =
C2

b

C2
N
·bΓ−2

γ

∑
i=1

(b1−µ)i =

=
(b−1)
(N−1)b

·
γ

∑
i=1

(b1−µ)i.

For the whole network (3) appears as follows

QΓ =
(b−1)
(N−1)b

·
Γ

∑
i=1

(b1−µ)i. (5)

Connected Component Distribution of Regular Block-Hierarchical
Networks. It is known for the connectedness in Erdös-Rényi networks that [7]:

– a connected component of size more than O(logN) does not appear in the
network for p < 1/N – subcritical phase;

– a connected component of size O(N(2/3)) appears in the networks for
p = 1/N – critical point;

– the network is connected for p > 1/N – supercritical phase.
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Investigation on classical and scale-free networks in the subcritical phase shows
power-law dependence of 〈CC〉s on the component size (Fig. 3), and one can see that
the absolute value of slope decreases with the connection probability growth.

Fig. 3. Power-law behavior 〈CC〉s ∼ s−l in log-log plot for the networks of Erdös-Rényi
model (a) and Barabási-Albert (scale-free) model (b). The results are obtained using the
automated system xRandNet on the ensemble of 100 networks of size N = 1024 in the

subcritical phase (for the N is p≤ 1/N ≈ 0,00097).

To identify the CC distribution behavior for block-hierarchical networks on
the xRandNet system, the research was conducted for different branching indices
(b= {2,3}) with different maximal levels (for b= 2, Γ= {10,11, . . . ,20} is taken and
for b = 3, Γ = {6,7, . . . ,14}). Ensembles of 103 network realizations are considered.
The analysis of CC distribution behavior showed that for block-hierarchical networks
2 critical points, µ1 and µ2, can be identified which define the different behavior of
CC distribution.

– For µ < µ1, CC distribution is growing, wherein the behavior can be de-
scribed as power-law (Fig. 4, a), namely 〈CC〉s ∼ sl , where s is the size of the cluster.

– For µ1 < µ < µ2 the CC distribution graph shows a peak (defining the size
of the cluster, which occurs more frequently than all others (Fig. 4, b); the asterisks
refer to the peaks).

– For µ > µ2 CC distribution is starting to go down following the power-law
rule as in the classical model of 〈CC〉s ∼ s−l (Fig. 4, c).

– In case of further increase µ > 10 (for all networks this value did not
exceed 10) the network has hardly any connections; it falls into single nodes.

– It is obvious, that if µ = 0 (which corresponds to p = 1), the network
is complete.

The change in the CC distribution behavior is tracked changing the density
parameter with proper steps starting from 0. In case of a very small growth of the
network density (which corresponds to the decrease in the probability of connection
between the peak near 1 (this follows from (5)), even though the network remains
dense, it immediately loses its connectivity. This behavior is drastically different
from that of the classical network and is explained by the absence of connections on
the last level in the block-hierarchical network, which already results in the emer-
gence of discrete components. One can see from the graph Fig. 4, a, that for the
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values µ < µ1 almost always (with a probability of near 1) there appears a gigantic
connectivity component of the size of N order, and the number of other small com-
ponents is near-zero. As closer µ to µ1, as biggen the number of the connected small
components. This is exactly why the slope is less sharp (that is to say, the value l is
going down). Nevertheless, even if µ is near µ1, the probability of the appearance of
the gigantic component is more than all the others in sum.
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Fig. 4. CC distribution behavior in the log-log plot for the 3 ranges of the density parameter
µ for a block-hierarchical network with the parameters b = 2, Γ = 10: a) exponential depen-
dency of the growth 〈CC〉s ∼ sl ; b) emergence of the peak marked by asterisk; c) exponential
dependency of the fall 〈CC〉s ∼ s−l . The results are obtained using the xRandNet system on

the ensemble of 1000 networks.

The picture changes when the value µ = µ1 is attained: a transitional phase
begins. The graph shows a peak (Fig. 4, b), that is the appearance of a component
smaller in size than N is more probable than the appearance of a gigantic component.
With each step of the change µ > µ1 one can see that the peak appears for an in-
creasingly smaller component. In other words, these are the connections appearing
at a lower level that become decisive for the distribution of the connecting compo-
nents. For example, on the graph of Fig. 4, b one can see that in the case of µ = 0.11
the decisive connections appear on the 8th level (the biggest component has the size
28 = 256) for µ = 0.15 they emerge on the 5th level, and in case of µ = 0.55 the
connections are on the 1st level (that is, only 2s appear with a higher probability).

After the value µ2 one can already see the full transition to the behavior typical
to the classical model: there is less probability of the appearance of the gigantic
component (near-zero) and many small components. With the growth of µ > µ2 the
appearance of the components of big sizes stops (on graph Fig. 4, c it is clear, that the
components of the size 512, 256, 128, etc. are gradually lost). Already at the value
of µ = 10 the network comes to a situation where even the appearance of 2s has a
near-zero probability, that is the network completely falls into isolated nodes.
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Conclusion. The described behavior of CC distribution for the block-
hierarchical networks is expectedly different from the corresponding behavior both
for classical random networks and for scale-free networks:

- the state of connectivity for them is achieved when the probability of the
connection of 2 nodes is close to 1 (µ is near-zero);

- on its way to such a state, CC distribution changes its behavior near the 2
values µ1 and µ2, which correspond to the probability of connections which for the
classical random network would be in the supercritical phase.

µ1, µ2, p1 and p2 values calculated by Eq. (5) for block-hierarchical networks for b = 2

Γ N µ1 p1 µ2 p2 1/N
10 1 024 0.1 ≈ 0.5 0.6 ≈ 0.03 ≈ 9.7 ·10−4

17 131 072 0.05 ≈ 0.5 0.6 ≈ 0.002 ≈ 7.6 ·10−6

20 1 048 576 0.046 ≈ 0.5 0.6 ≈ 0.0005 ≈ 9.5 ·10−7

In the course of research on CC distribution using the automated system
xRandNet the values µ1 and µ2 were deduced for block-hierarchical networks with
a branching index of 2 and different maximal levels (Γ = 10,17,20), which can be
seen in Table. As well as this, the probabilities of the connection of the 2 nodes of
these networks are calculated by formula (5).
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3. Moretti P., Muñoz M.A. Griffiths Phases and the Stretching of Criticality in Brain
Networks. // Nature. Communications, 2013, № 4, p. 2521–2547.

4. Kocharyan A.G. Application xRandNet for Studying the Topological Properties of
Random Networks. // Proceedings of the NAS RA and SEUA. Ser. Technical Sciences,
2017, v. 70, № 4, p. 519–529 (in Russian).

5. Avetisyan S., Harutyunyan A., Aslanyan D. et al. Algorithms for Computation of
Statistical Properties of Regular Block-hierarchical Networks. // Proceedings of the 6th
Annual Scientific Conference. RAU, 2012, p. 108–121 (in Russian).

6. Avetisyan S., Samvelyan M., Karapetyan M. Random Irregular Block-Hierarchical
Networks: Algorithms for Computation of Main Properties. // Proceedings of the 9th
Annual Scientific Conference. RAU, 2015, p. 48–60 (in Russian).

7. Barabási A.L. Network Science. Cambridge University Press, 2016, 456 p.


